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Using theoretical arguments, we prove the numerically well-known fact that the eigenvalues of all localized
stationary solutions of the cubic-quintic �2+1�-dimensional nonlinear Schrödinger equation exhibit an upper
cutoff value. The existence of the cutoff is inferred using Gagliardo-Nirenberg and Hölder inequalities together
with Pohozaev identities. We also show that, in the limit of eigenvalues close to zero, the eigenstates of the
cubic-quintic nonlinear Schrödinger equation behave similarly to those of the cubic nonlinear Schrödinger
equation.
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I. INTRODUCTION

The nonlinear Schrödinger equation �NLSE� has been
widely used in modeling nonlinear wave dynamics in many
physical scenarios, such as nonlinear optics �1,2�, plasma
physics �3�, Bose-Einstein condensates �4�, biomolecular dy-
namics �5�, and others �6–8�. The simplest scalar NLSE is of
the form

i
��

�t
= − �� + f����2�� , �1�

where � is a complex field defined usually on the whole Rn

with n=1,2 ,3 and f describes the nonlinear response of the
medium. Many different types of nonlinearities f����2� arise
in the different physical fields of applicability of the equation
including power-law, saturable, and nonlocal nonlinearities
to cite a few examples. The most relevant one, for which
many theoretical and analytical studies of NLSEs have been
done, is the classical cubic nonlinearity f����2�=g���2, both
because of its direct interest and also because it corresponds
to the simplest nonlinear response proportional to the square
of the involved field �namely, the light intensity in optics, the
number of particles in Bose-Einstein condensation �BEC� ap-
plications, etc.�.

One of the simplest extensions of the cubic NLSE is the
so-called cubic-quintic NLS �CQNLS� model, which, in nor-
malized units, is

i
��

�t
= − �� − g���2� + h���4� . �2�

The CQNLS equation is another universal mathematical
model describing many situations of physical interest and
approximating other more complicated ones. As examples, it
arises in plasma physics �9,10�, condensed matter physics
�11�, nuclear physics �12�, Bose-Einstein condensation �13�,
etc., but probably the application of the model which has
attracted more attention in the last years is the description of
the propagation of paraxial beams in certain nonlinear opti-
cal media. Many different optical materials have a refractive
index that can be well described by a cubic-quintic nonlin-
earity such as some semiconductors and doped glasses �e.g.,

AlGaAs �14� and CdSxSe1−x �15��, the polydiacetylene para-
toluene sulfonate �PTS� �16�, chalcogenide glasses �17�,
some transparent organic materials �18�, or even media with
complex susceptibilities induced by electromagnetically in-
duced transparency �19�.

We will consider localized stationary solutions �i.e., soli-
tary waves or solitons� of Eq. �2�. Thus, taking ��x , t�
=u�x�ei�t we will study solutions of

�u = �u + �g�u�2 − h�u�4�u , �3�

with u a complex function defined on R2 and vanishing at
infinity. The stationary solutions of Eq. �3� and their stability
properties have been studied in many papers �10,20–35�.

A well-known fact is that no solitary waves are found
beyond a maximum value of the eigenvalue �=�*. In fact,
for ���* one finds many solutions with different widths
corresponding to very different values of the norm of the
solution N�=�R2�u��2dx. In fact, when �→�*, N�→�.
Thus, there is a cutoff in the permitted eigenvalue of local-
ized solutions of the CQNLS model. The existence of this
cutoff and its specific value as a function of the parameters
was discussed in many papers. For fundamental states it was
studied numerically �36–38� and by approximate variational
methods with a super-Gaussian ansatz in Ref. �23� and also
in Ref. �28�. For vortex states the same problem was studied
by means of variational �33�, numerical �33�, and analytical
methods �26,31�.

In this paper we provide theoretical support for previous
works dealing with the problem of the cutoff
�23,26,28,31,33,36� and prove in a rigorous yet simple way
that localized stationary states of the cubic-quintic NLSE
exist only for eigenvalues on a finite interval. The obtained
result holds for all types of localized solutions—e.g., ground,
vortex, or dipole states—of the cubic-quintic NLSE.

The article is organized as follows: first in Sec. II we
introduce the NLSE to be considered, and the integral quan-
tities and the inequalities to be used in the subsequent sec-
tions. Section III contains the derivation of the upper limit
for the eigenvalues and analysis of the behavior near the
cutoff. Next, in Sec. IV we describe the related problem of
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the asymptotic behavior of the stationary states in the NLSE
limit. Finally, in Sec. V we summarize our results.

II. STATEMENT OF THE PROBLEM

The typical situation for the cubic-quintic nonlinearity
corresponds to the case where we have a combination of
focusing cubic and defocusing quintic terms. The interplay
of focusing and defocusing nonlinearities in that case pre-
vents the wave collapse �38� and is responsible for the liq-
uidlike features of the localized stationary states �21,28,33�.

In this section we will consider the case of two spatial
dimensions, which is the one relevant to nonlinear optics and
many other applications of the model.

The equation we are dealing with can be written as

�u = �u + gu3 − hu5, �4�

with � ,g ,h�0. Our analysis will use the energy

K = − �N + gU2 − hU3 �5�

and Pohozaev identities �39,40�

0 = �N −
g

2
U2 +

h

3
U3, �6�

where the moments of u are defined by

K = �
Rn

dnr��u�2, �7a�

N = �
Rn

dnr u2, �7b�

Uj = �
Rn

dnr u2j, j = 2,3. �7c�

III. CUTOFF IN THE CUBIC-QUINTIC NLSE

A. Existence of a cutoff

By direct calculations from �5� and �6� we get the follow-
ing bilinear relation between the moments:

4hK2 + �3g2 − 16�h�NK + ��16�h − 3g2�N2

+ g2h�NU3 − U2
2� = 0. �8�

This relation can be rewritten in terms of X=N /K:

��� − �*�X2 + ��* − ��X +
1

4
�1 + �� = 0, �9�

where

� =
g2

4

NU3 − U2
2

K2 , �* =
3

16

g2

h
. �10�

It should be noted that it follows from the Hölder inequality

NU3 � U2
2 �11�

that ��0. Now, since our quadratic equation �9� must have
real roots, after calculating its discriminant

D = ��* − ����* + ��� , �12�

one can conclude that

� 	 �*. �13�

Thus, there is an upper bound on the eigenvalues 3g2 /16h
and localized stationary states of Eq. �4� exist only when �
lies within the interval

� � �0,
3

16

g2

h
	 . �14�

This result agrees with previous numerical and approximate
calculations for this quantity �23,26,28,31,33,36�, but here is
obtained rigorously using simple arguments �see also Ref.
�41��. In fact, the comparison with the numerical results of
Refs. �23,28,33� shows that our bound is optimal and
matches closely the numerics.

B. Behavior near the cutoff

A natural question that arises, after establishing the bound
�13�, is what occurs with the solution when the parameter �
approaches the cutoff limit. The aim of this section is to
obtain a bound for the quantity N which allows us to show
that N→ +� when �→�*.

Solving Eq. �9� we obtain that

N

K
=

1

2�
�1 +
�* + ��

�* − �
	 . �15�

The sign before the radical is determined by the identity

2�N − K =
1

2
gU2 � 0, �16�

which is a direct consequence of Eqs. �5� and �6�. Since �
�0, Eq. �15� leads to the inequality

N

K
�

1

2�

 �*

�* − �
. �17�

On the other hand, we can obtain another type of bounds for
K and N. From Eqs. �5� and �6� we get

h

3
U3 = �N − K , �18a�

K =
1

2
gU2 −

2

3
hU3. �18b�

Combining these relations and the identity

�K

��
= N , �19�

which can be derived by differentiating Eq. �4� and applying
again Eqs. �5� and �6�, we conclude that K is a monotone
function. These lead to the fact that

BRIEF REPORTS PHYSICAL REVIEW E 78, 027601 �2008�

027601-2



K = 0 when � = 0 �20�

and, respectively, K=�0
�Nd�. Now let us recall the particular

form of the Gagliardo-Nirenberg �42–46� inequality, which
in our case can be written as

U2 � CGNKN , �21�

where CGN is the optimal constant for the Gagliardo-
Nirenberg inequality in two dimensions. Applying this in-
equality to Eq. �18b� we get

N �
2

CGNg
. �22�

Combining Eqs. �22� and �19� we get the inequality

K �
2

CGNg
� . �23�

Substituting this estimate into �17� we obtain finally

N �
1

CGN

 �*

�* − �
, �24�

which guarantees that N→ +� as �→�*�3g2 / �16h�. Thus
we can see that the cutoff phenomenon is a manifestation of
the blowup of the norm �note that N is nothing but the L2

norm of u�.
Another consequence of the estimate �24� is the fact that

N is bounded from below by 1 /CGN when �→0.

IV. LIMIT �\0

It is possible to analyze the asymptotic behavior of solu-
tions of Eq. �4� when �→0. To do it we use the rescaling
symmetry of our equation; specifically, we will use the fact
that if u is a solution of Eq. �4�, then the function ũ given by
ũ�r�=
u��r� solves

�̃u = �ũ + g̃ũ3 − h̃ũ5, �25�

where

�̃ = �2�, g̃ =
�2


2 g, h̃ =
�2


4 h . �26�

Calculating the moments of the function ũ we arrive at the
following rescaling relation for K and N treated as functions
of the parameters �, g, and h:

K��,g,h� =
1


2K��2�,
�2


2 g,
�2


4 h	 , �27a�

N��,g,h� =
�2


2 N��2�,
�2


2 g,
�2


4 h	 . �27b�

Further, choosing

�2 =
1

�
, 
2 =

g

�
,

we can obtain

K��,g,h� =
�

g
K�1,1,

�h

g2 	 , �28a�

N��,g,h� =
1

g
N�1,1,

�h

g2 	 . �28b�

Considering the limit �→0 we find the following asymptotic
formulas for N�u� and K�u�:

N�u� =
1

g
N��� + O��� , �29a�

K�u� =
�

g
K��� +

�2h

3g3 U3��� + O��3� , �29b�

where � is the Townes soliton—i.e., the solution of

�� = � − �3. �30�

These results make it possible to deduce that in the
asymptotic region as �→0 the behavior of solutions of the
cubic-quintic Schrödinger equation is similar to the behavior
of eigensolutions of the cubic nonlinear Schrödinger
equation.

V. CONCLUSIONS

Using general mathematical arguments we have shown
that the localized stationary solutions of the cubic-quintic
nonlinear Schrödinger equation exhibit an eigenvalue cutoff.
This result holds for all types of localized stationary
solutions—e.g., fundamental, vortex, or dipole states. The
cutoff is in excellent agreement with previous approximate
or numerical results. We have also obtained a lower bound
for the number of particles in the eigenstates that diverges
exactly at the cutoff �=�*. Finally, in the limit of small
eigenvalues we obtain the result that the eigenstates of the
cubic-quintic nonlinear Schrödinger equation behave in the
same way as those of the cubic nonlinear Schrödinger
equation.

Our results complement present knowledge on one of the
key models of mathematical physics and support in a rigor-
ous yet simple way previous numerical observations.
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